df.cumsum(axis=None, skipna=True, args, kwargs) ๋์ ํฉ
df.cumprod(axis=None, skipna=True, args, kwargs) ๋์ ๊ณฑ
axis : ๋์ ํฉ/๋์ ๊ณฑ์ ๊ตฌํ ์ถ์ ์ง์ ํฉ๋๋ค.
skipna : ๊ฒฐ์ธก์น๋ฅผ ๋ฌด์ํ ์ง ์ฌ๋ถ ์
๋๋ค
์์
df = pd.DataFrame({'col1':[2,-2,4,5,6,8],'col2':[3,4,np.NaN,7,4,5]})
print(df)
col1 col2
0 2 3.0
1 -2 4.0
2 4 NaN
3 5 7.0
4 6 4.0
5 8 5.0
๋์ ํฉ cumsum()
print(df.cumsum())
col1 col2
0 2 3.0
1 0 7.0
2 4 NaN
3 9 14.0
4 15 18.0
5 23 23.0
๋์ ๊ณฑ cumprod()
print(df.cumprod())
col1 col2
0 2 3.0
1 -4 12.0
2 -16 NaN
3 -80 84.0
4 -480 336.0
5 -3840 1680.0
skipna ์ธ์์ ์ฌ์ฉ
print(df.cumsum(skipna=False))
col1 col2
0 2 3.0
1 0 7.0
2 4 NaN # NaN ๋ฑ์ฅ๋ถํฐ ๊ณ์ฐํ ์ ์์ผ๋ฏ๋ก NaN ๋ฐํ
3 9 NaN
4 15 NaN
5 23 NaN
'Study > Python' ์นดํ ๊ณ ๋ฆฌ์ ๋ค๋ฅธ ๊ธ
[python] ์ธ๋ฑ์ค๋ฅผ ์ด๋ก ๋ณํ (reset_index) (0) | 2023.06.06 |
---|---|
[python] ๊ฒฐ์ธก๊ฐ ๋์ฒด/๋ณ๊ฒฝ (fillna) (0) | 2023.06.06 |
[python] numpy ์์์ ์ฌ๋ฆผ, ๋ด๋ฆผ, ๋ฒ๋ฆผ (0) | 2023.05.23 |
[Matplotlib] python matplotlib ํ๊ธ ๊นจ์ง ํด๊ฒฐํ๊ธฐ (0) | 2023.03.26 |
[python] ๋ ผ๋ฆฌ์ฐ์ฐ์(Logical Operator): AND, OR, NOT, XOR (0) | 2023.03.22 |